

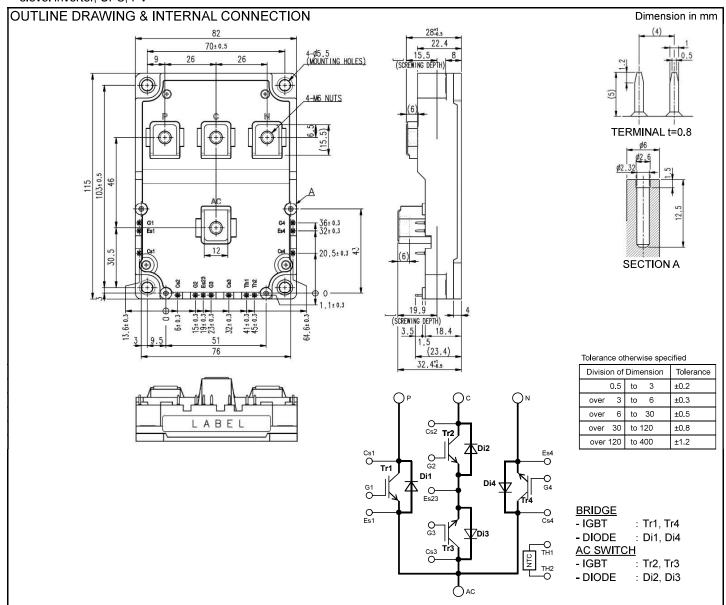
<IGBT Modules>

CM400ST-24S1

HIGH POWER SWITCHING USE INSULATED TYPE

fourpack (BRIDGE & AC SWITCH)

BRIDGE 1200V


AC SWITCH 6 5 0 V

Maximum junction temperature T_{vjmax} 1 7 5 °C

- Flat base Type
- Copper base plate
- •Tin plating pin terminals
- RoHS Directive compliant*
- •Recognized under UL1557, File E323585

APPLICATION

3level inverter, UPS, PV

1

HIGH POWER SWITCHING USE

INSULATED TYPE

MAXIMUM RATINGS (T_{vj}=25 °C, unless otherwise specified)

BRIDGE PART IGBT/DIODE (Tr1, Tr4, Di1, Di4)

Symbol	Item	Conditions	Rating	Unit
V _{CES} Collector-emitter voltage		G-E short-circuited	1200	V
V _{GES} Gate-emitter voltage		C-E short-circuited	± 20	V
Ic	Callegter gurrant	DC, T _C =103 °C (Note2, 4)	400	Α
I _{CRM} Collector current		Pulse, Repetitive, V _{GE} =15 V (Note3)	800	_ ^
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	2340	W
l _E (Note1)	Emitter current	DC (Note2)	400	۸
I _{ERM} (Note1)		Pulse, Repetitive (Note3)	800	Α

AC SWITCH PART IGBT/DIODE (Tr2, Tr3, Di2, Di3)

Symbol	Item	Conditions	Rating	Unit	
V _{CES}	Collector-emitter voltage	G-E short-circuited	650	V	
V _{GES} Gate-emitter voltage		C-E short-circuited	± 20	V	
Ic	Collector current	DC, T _C =95°C (Note2, 4)	400	А	
I _{CRM}	Collector current	Pulse, Repetitive, V _{GE} =15 V (Note3)	800		
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	1415	W	
l _E (Note1)	Emitter current	DC (Note2)	400	Α	
I _{ERM} (Note1)	Emilier current	Pulse, Repetitive (Note3)	800	Α	

MODULE

Symbol	Item	Conditions	Rating	Unit
V _{isol}	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	4000	V
T _{vjmax}	Maximum junction temperature	Instantaneous event (overload)	175	°C
T _{Cmax}	Maximum case temperature	(Note4)	125	
T _{vjop}	Operating junction temperature	Continuous operation (under switching)	-4 0 ~ +150	°C
T _{stg}	Storage temperature	-	-40 ~ +125	

ELECTRICAL CHARACTERISTICS (T_{vj} =25 °C, unless otherwise specified)

BRIDGE PART IGBT/DIODE (Tr1, Tr4, Di1, Di4)

Symbol	Item	Conditions	Conditions		Limits			
Syllibol	item	Conditions		Min.	Тур.	Max.	Unit	
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited	V _{CE} =V _{CES} , G-E short-circuited		-	1.0	mA	
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA	
$V_{\text{GE(th)}}$	Gate-emitter threshold voltage	I _C =40mA, V _{CE} =10 V		5.4	6.0	6.6	V	
		I _C =400 A, V _{GE} =15 V,	T _{vj} =25 °C	-	1.80	2.25		
V _{CEsat}		Auxiliary Terminal	T _{vj} =125 °C	-	2.00	-	l v	
(Terminal)	Calle at an arrive and making well-	(Note5)	T _{vj} =150 °C	-	2.05	-	1	
	Collector-emitter saturation voltage	I _C =400 A, V _{GE} =15 V,	T _{vj} =25 °C	-	1.70	2.15		
V _{CEsat}		Chip	T _{vj} =125 °C	-	1.90	-	l v	
(Chip)		(Note5)	T _{vj} =150 °C	-	1.95	-		
Cies	Input capacitance			-	-	40	nF	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited	V _{cE} =10 V, G-E short-circuited		-	8.0		
Cres	Reverse transfer capacitance	7		-	-	0.67		
Q _G	Gate charge	V _{CC(P-C)} =V _{CC(C-N)} =300 V, I _C =400A, V _C	_{GE} =15 V	-	840	-	nC	
t _{d(on)}	Turn-on delay time	\\ -\\ -200\\ I =400\\	/ -:45 \/	-	-	700		
t _r	Rise time	$V_{\text{CC(P-C)}} = V_{\text{CC(C-N)}} = 300 \text{ V}, I_{\text{C}} = 400 \text{ A}, \text{ V}$	'GE=±15 V,	-	-	200	ns	
t _{d(off)}	Turn-off delay time	7 B. 400 Latation Lord		-	-	600		
t _f	Fall time	$R_G=1.6 \Omega$, Inductive load		-	-	150		
A1-1-4)		I _E =400 A, G-E short-circuited,	T _{vj} =25 °C	-	2.60	3.40		
V _{EC} (Note1)		Auxiliary Terminal	T _{vj} =125 °C	-	2.16	-	l v	
(Terminal)		(Note5)	(Note5)	T _{vj} =150 °C	-	2.10	-	
(Noted)	Emitter-collector voltage	I _E =400 A, G-E short-circuited,	T _{vj} =25 °C	-	2.50	3.30		
V _{EC} ^(Note1) (Chip)		Chip	T _{vj} =125 °C	-	2.06	-	l v	
		(Note5)	T _{vj} =150 °C	-	2.00	-		

2

Publication Date : September 2016 CMH-10632-D Ver.1.4

HIGH POWER SWITCHING USE

INSULATED TYPE

ELECTRICAL CHARACTERISTICS (Cont; Tvj=25 °C, unless otherwise specified)

BRIDGE PART IGBT/DIODE (Tr1, Tr4, Di1, Di4)

Symbol	Item	L Item Conditions		Conditions		Limits		Unit
Syllibol	item	Conditions		Min.	Тур.	Max.	Oill	
t _{rr} (Note1)	Reverse recovery time	$V_{CC(P-C)}=V_{CC(C-N)}=300 \text{ V}, I_E=400 \text{ A},$	V _{GE} =±15 V,	-	-	250	ns	
Q _{rr} (Note1)	Reverse recovery charge	R _G =0 Ω(Tr2/Tr3), Inductive load		-	16	-	μC	
Eon	Turn-on switching energy per pulse	V _{CC(P-C)} =V _{CC(C-N)} =300 V, I _C =I _E =400 A,	D (Tr1 4) =1.6.0	-	17.0	-	m l	
E _{off}	Turn-off switching energy per pulse	V _{GE} =±15 V, T _{vj} =150 °C,	$R_{G}(Tr1,4) = 1.6 \Omega$	-	23.5	-	mJ	
E _{rr} (Note1)	Reverse recovery energy per pulse	Inductive load	$R_G(Tr2,3) = 0 \Omega$	-	7.0	-	mJ	
R _{cc'+EE'}	Internal lead resistance	Main terminals-chip, per switch, Tc=25 °C (Note4)		1	1	0.25	mΩ	
r _g	Internal gate resistance	Per switch		-	4.9	-	Ω	

RECOMMENDED OPERATING CONDITIONS

Cumbal	Itam	Conditions		Limits			Unit
Symbol	ltem			Min.	Тур.	Max.	
V _{CC(P-C)}	(DC) Supply voltage	Applied across each of P to C and C to N		-	300	425	٧
V_{GEon}	Gate (-emitter drive) voltage	Applied across emitter to gate of each IGBT		13.5	15.0	16.5	V
R _G	External gate resistance	Per switch	Tr1, Tr4	1.6	-	16	Ω

AC SWITCH PART IGBT/DIODE (Tr2, Tr3, Di2, Di3)

Symbol	Item Conditions -			Limits			
Зуппон			Min.	Тур.	Max.	Unit	
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited	V _{CE} =V _{CES} , G-E short-circuited			1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μΑ
$V_{\text{GE(th)}}$	Gate-emitter threshold voltage	I _C =40mA, V _{CE} =10 V		5.4	6.0	6.6	V
		I_{C} =400 A, V_{GE} =15 V, T_{vj} =25 °C	T _{vj} =25 °C	-	1.35	1.75	
V _{CEsat} (Terminal)		Auxiliary Terminal	T _{vj} =125 °C	-	1.43	-	V
(Terminal)	Collector-emitter saturation voltage	(Note5)	T _{vj} =150 °C	-	1.45	-	
	Collector-entitle Saturation Voltage	I _C =400 A, V _{GE} =15 V,	T _{vj} =25 °C	-	1.25	1.65	
V _{CEsat} (Chip)		Chip	T _{vj} =125 °C	-	1.33	-	V
(Chip)		(Note5)	T _{vj} =150 °C	-	1.35	-]
Cies	Input capacitance			-	-	48	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited		-	-	3.1	nF
Cres	Reverse transfer capacitance	7	1 32 1		-	0.9	
Q _G	Gate charge	V _{CC(P-C)} =V _{CC(C-N)} =300 V, I _C =400 A	, V _{GE} =15 V	-	1450	-	nC
t _{d(on)}	Turn-on delay time	V V 000 V I 400 A			-	350	
tr	Rise time	$ V_{CC(P-C)}=V_{CC(C-N)}=300 \text{ V}, I_C=400 \text{ A}, V_{GE}=\pm15 \text{ V},$		-	-	150	ns
t _{d(off)}	Turn-off delay time	7	<u> </u>		-	500	
tf	Fall time	R_G =0 Ω, Inductive load		-	-	300	1
		I _E =400 A, G-E short-circuited,	T _{vj} =25 °C	-	2.00	2.80	
V _{EC} (Note1)		Auxiliary Terminal	T _{vj} =125 °C	-	1.95	-	V
(Terminal)		(Note5)	T _{vi} =150 °C	-	1.90	-	
	- Emitter-collector voltage	I _E =400A, G-E short-circuited,	T _{vj} =25 °C	-	1.90	2.70	
V _{EC} (Note1)		Chip	T _{vj} =125 °C	-	1.85	-	V
(Chip)		(Note5)	T _{vi} =150 °C	-	1.80	-	1
t _{rr} (Note1)	Reverse recovery time	V _{CC(P-C)} =V _{CC(C-N)} =300 V, I _E =400 A	, V _{GE} =±15 V,	-	-	200	ns
Q _{rr} (Note1)	Reverse recovery charge	R _G =1.6 Ω(Tr1/Tr4), Inductive loa		_	16	_	μC
Eon	Turn-on switching energy per pulse	V _{CC(P-C)} =V _{CC(C-N)} =300 V, I _C =I _E =400 A,	I	_	0.2	_	
E _{off}	Turn-off switching energy per pulse	$V_{GE}=\pm 15 \text{ V, } T_{vi}=150 \text{ °C,}$ $R_{G}(Tr2,3)=0 \Omega$		-	21.2	-	mJ
E _{rr} (Note1)	Reverse recovery energy per pulse	Inductive load	$R_{G}(Tr1,4) = 1.6 \Omega$	_	15.3	-	mJ
R _{CC'+EE'}	Internal lead resistance	Main terminals-chip, per switch, Tc=25 °C (Note4)		-	-	0.25	mΩ
r _g	Internal gate resistance	Per switch		_	1.5	<u> </u>	Ω

3

Publication Date : September 2016 CMH-10632-D Ver.1.4

HIGH POWER SWITCHING USE

INSULATED TYPE

ELECTRICAL CHARACTERISTICS (Cont; Tvj=25 °C, unless otherwise specified)

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Conditions			Limits		Unit
Symbol	item			Min.	Тур.	Max.	Oill
V _{CC(P-C)}	(DC) Supply voltage	Applied across each of P to C and C to N		-	300	360	V
V _{GEon}	Gate (-emitter drive) voltage	Applied across emitter to gate of each IGBT		13.5	15.0	16.5	V
R _G	External gate resistance	Per switch	Tr2, Tr3	0	-	16	Ω

NTC THERMISTOR PART

Symbol	Item	Conditions		Unit		
Symbol	item		Min.	Тур.	Max.	01111
R ₂₅	Zero-power resistance	T _C =25 °C (Note4)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	R ₁₀₀ =493 Ω, T _C =100 °C (Note4)	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note6)	-	3375	-	K
P ₂₅	Power dissipation	T _C =25 °C (Note4)	-	-	10	mW

THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
Symbol		Conditions	Min.	Тур.	Max.	O I II
R _{th(j-c)Q}		Junction to case, per BRIDGE PART IGBT (Note4)	-	-	0.064	
R _{th(j-c)D}	hermal resistance	Junction to case, per BRIDGE PART FWD (Note4)	-	-	0.105	Κ/W
R _{th(j-c)Q}	Theimarresistance	Junction to case, per AC SWITCH PART IGBT (Note4)	-	-	0.106	I N/VV
R _{th(j-c)D}		Junction to case, per AC SWITCH PART FWD (Note4)	-	-	0.165	
R _{th(c-s)}	Contact thermal resistance	Case to heat sink, per 1 module,	- 0.011	0.011		K/W
		Thermal grease applied (Note4, 7)		-	IC/VV	

MECHANICAL CHARACTERISTICS

Symbol	Item	Conditions		Limits			Unit
Symbol	item	Conditions		Min.	Тур.	Max.] """ [
Mt	Mounting torque	Main terminals	M 6 screw	3.5	4.0	4.5	N∙m
Ms	Mounting torque	Mounting to heat sink	M 5 screw	2.5	3.0	3.5	N∙m
m	mass	-		-	560	-	g
a	Conservation of	Terminal to terminal		14.4	-	-	mm
d _s	Creepage distance	Terminal to base plate		16.7	-	-	
_	Classana	Terminal to terminal		8.0	-	-	mm
d _a	Clearance	Terminal to base plate		16.7	-	-	
e _c	Flatness of base plate	On the centerline X, Y (Note8)		- 50	-	+100	μm

^{*:} This product is This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU.

Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWD).

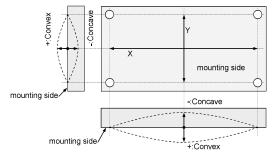
- 2. Junction temperature (T_{vj}) should not increase beyond T_{vjmax} rating.
- 3. Pulse width and repetition rate should be such that the device junction temperature (Tvi) dose not exceed Tvimax rating.
- 4. Case temperature (T_C) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.

4

5. Pulse width and repetition rate should be such as to cause negligible temperature rise.

6.
$$B_{(25/50)} = In(\frac{R_{25}}{R_{50}})/(\frac{1}{T_{25}} - \frac{1}{T_{50}})$$

 R_{25} : resistance at absolute temperature T_{25} [K]; T_{25} =25 [°C]+273.15=298.15 [K]


 R_{50} : resistance at absolute temperature T_{50} [K]; T_{50} =50 [°C]+273.15=323.15 [K]

7. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).

HIGH POWER SWITCHING USE

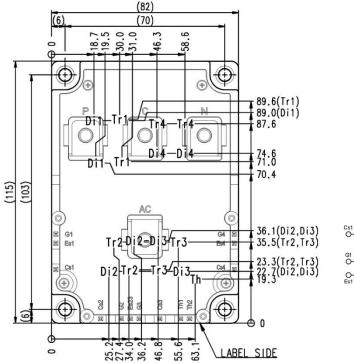
INSULATED TYPE

Note8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the next figure.

9. Use the following screws when mounting the printed circuit board (PCB) on the standoffs. The length of the screw depends on thickness (t1.0~t1.6) of the PCB.

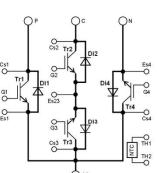
The length of the screw depends on thickness (tr.o~							
		Туре	Size	Tightening torque			
	(1)	PT®	K25×8	0.55 ± 0.055 N · m			
	(2)	PT®	K25×10	0.75 ± 0.075 N • m			
	(3)	DELTA PT®	25×8	0.55 ± 0.055 N • m			
	(4)	DELTA PT®	25×10	0.75 ± 0.075 N · m			
	(5)	B1 tapping screw	φ2.6×10 or φ2.6×12	0.75 ± 0.075 N · m			

by handwork (equivalent to 30 r/min

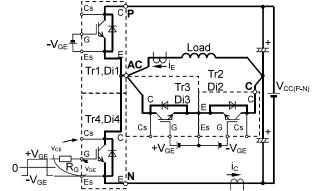

Recommended tightening method

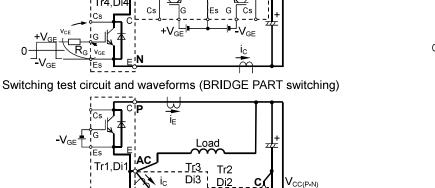
by mechanical screw driver)

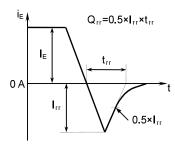
~ 600 r/min (by mechanical screw driver)


CHIP LOCATION (Top view)

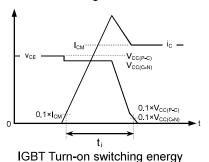
Dimension in mm, tolerance: ±1 mm

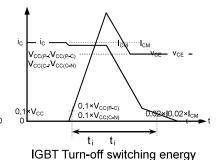

Tr1/Tr4: BRIDGE IGBT, Tr2/Tr3: AC SWITCH IGBT, Di1/Di4: BRIDGE FWD, Di2/Di3: AC SWITCH FWD, Th: NTC thermistor.


5



INSULATED TYPE



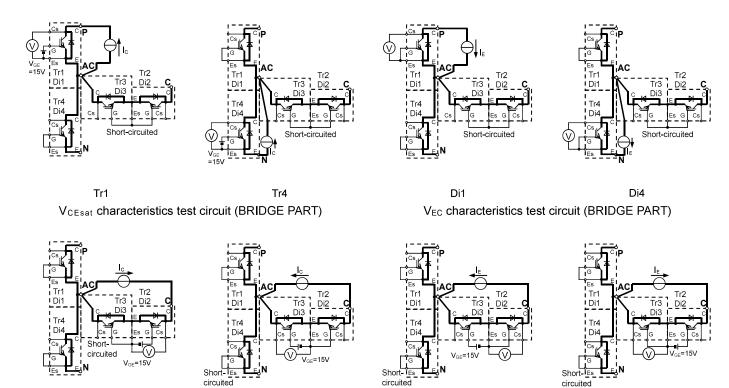


 $t_{d(on)}$

90 %

Switching test circuit and waveforms (AC SWITCH PART switching)

trr, Qrr test waveform V_{CC(P-C)}


FWD Reverse recovery energy

Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

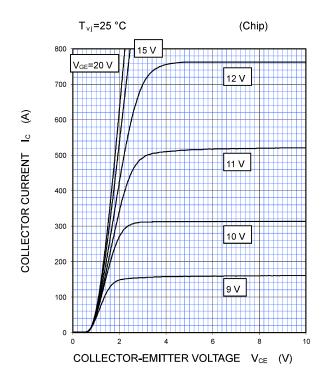
HIGH POWER SWITCHING USE

INSULATED TYPE

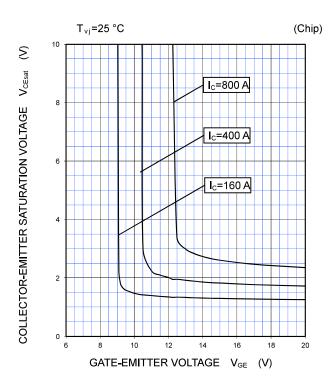
TEST CIRCUIT

7

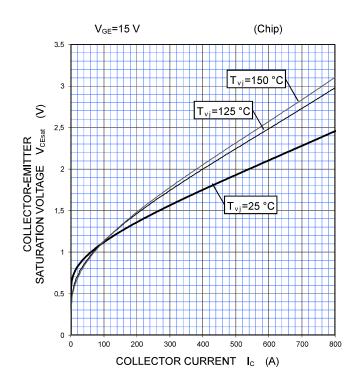
Di3

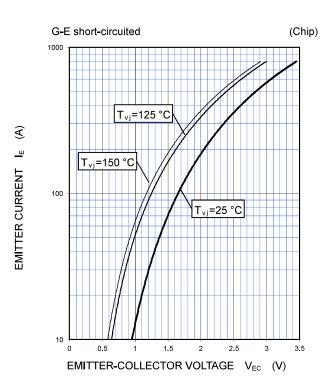

Di2

HIGH POWER SWITCHING USE INSULATED TYPE



BRIDGE PART

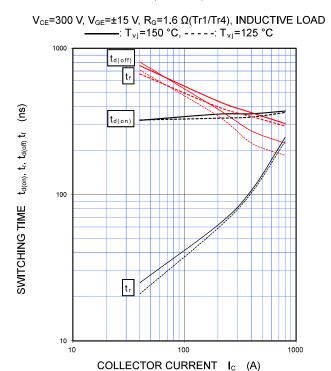

OUTPUT CHARACTERISTICS (TYPICAL)


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

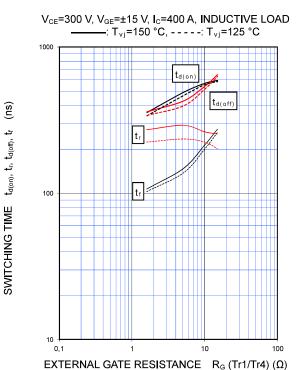
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)

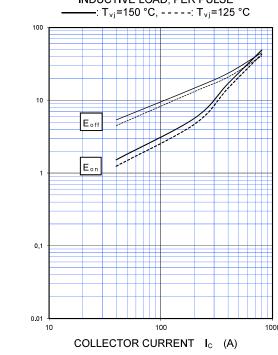
HIGH POWER SWITCHING USE INSULATED TYPE

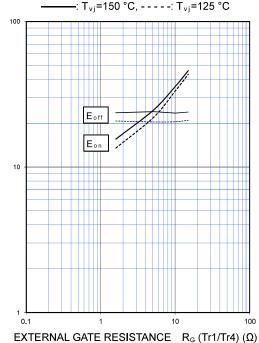

PERFORMANCE CURVES

BRIDGE PART


E)

SWITCHING ENERGY


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

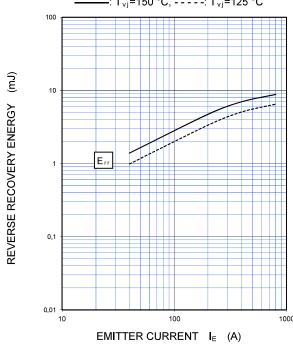

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) $V_{CE}=300 \text{ V, } V_{GE}=\pm15 \text{ V, } R_{G}=1.6 \Omega(Tr1/Tr4), \\ \text{INDUCTIVE LOAD, PER PULSE} \\ \hline \qquad : T_{vj}=150 \,^{\circ}\text{C, ----:} T_{vj}=125 \,^{\circ}\text{C}$

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CE}=300 V, V_{GE}=±15 V, I_C=400 A, INDUCTIVE LOAD, PER PULSE ——: T_{vj}=150 °C, - - - - : T_{vj}=125 °C

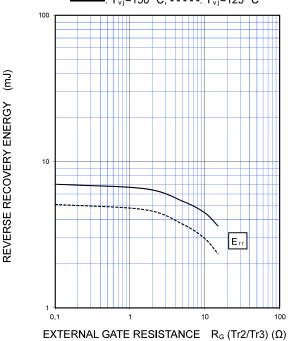
(E

SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY


HIGH POWER SWITCHING USE

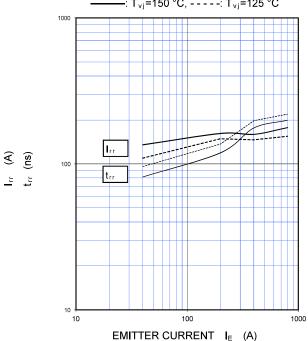
INSULATED TYPE

PERFORMANCE CURVES


BRIDGE PART

 $\begin{array}{c} \text{HALF-BRIDGE} \\ \text{SWITCHING CHARACTERISTICS} \\ (\text{TYPICAL}) \\ \text{V_{CE}=}300 \text{ V, V_{GE}=}\pm15 \text{ V, R_{G}=}0 \ \Omega \ (\text{Tr2/Tr3}), \\ \text{INDUCTIVE LOAD, PER PULSE} \\ \hline \qquad \qquad : $T_{v_{\text{J}}}$=}150 \ ^{\circ}\text{C}, ----: T_{v_{\text{J}}}$=}125 \ ^{\circ}\text{C} \end{array}$

HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)


V_{CE}=300 V, V_{GE}=±15 V, I_E=400 A,
INDUCTIVE LOAD, PER PULSE
——: T_{vj}=150 °C, - - - - : T_{vj}=125 °C

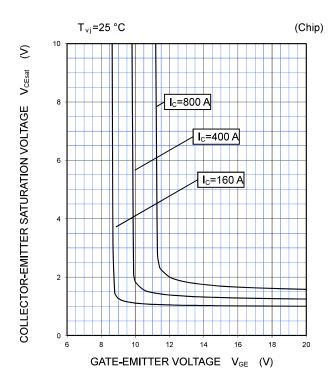
FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

 V_{CE} =300 V, V_{GE} =±15 V, R_{G} =0 Ω (Tr2/Tr3), INDUCTIVE LOAD

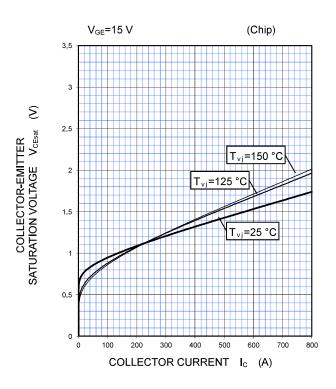
——: T_{v_i} =150 °C, - - - - : T_{v_i} =125 °C

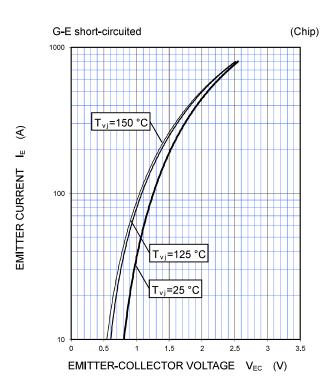
10

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

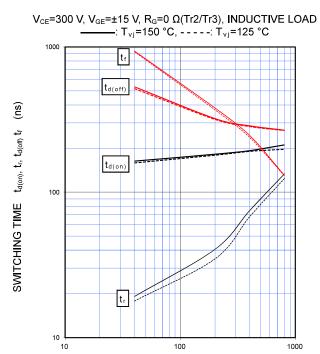
AC SWITCH PART


OUTPUT CHARACTERISTICS (TYPICAL)

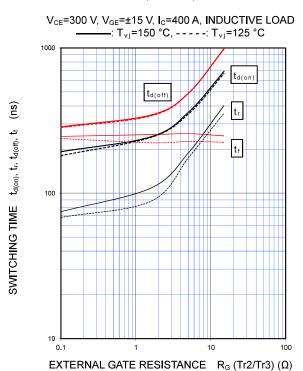

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)

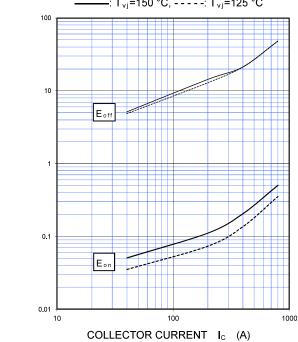


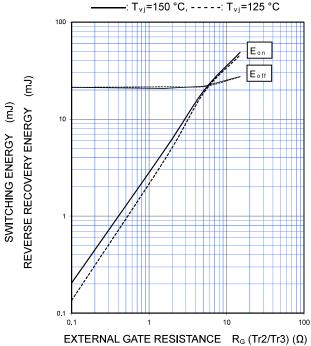
HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

AC SWITCH PART

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

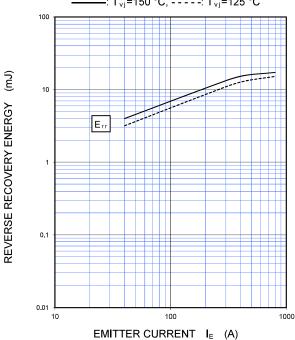

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) (c=300 V, V_{GE}=±15 V, R_G=0 Ω(Tr2/Tr3

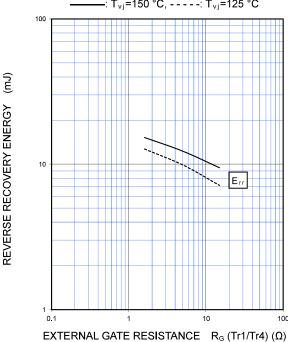
COLLECTOR CURRENT Ic (A)

 V_{CE} =300 V, V_{GE} =±15 V, R_{G} =0 Ω (Tr2/Tr3), INDUCTIVE LOAD, PER PULSE —:: T_{vi} =150 °C, ----: T_{vi} =125 °C

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CE}=300 V, V_{GE}=±15 V, I_C=400 A, INDUCTIVE LOAD, PER PULSE

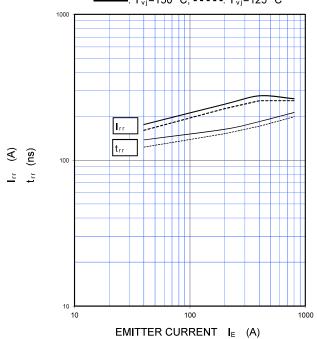

SWITCHING ENERGY

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

AC SWITCH PART

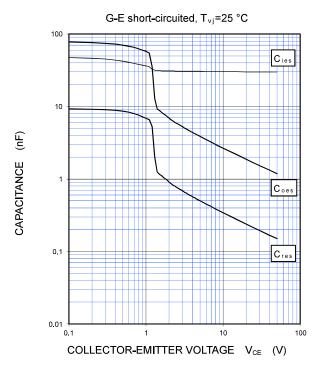
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) $V_{\text{CE}} = 300 \text{ V, } V_{\text{GE}} = \pm 15 \text{ V, } R_{\text{G}} = 1.6 \Omega \text{ (Tr1/Tr4),} \\ \text{INDUCTIVE LOAD, PER PULSE} \\ \hline \qquad \qquad : T_{vj} = 150 \,^{\circ}\text{C, ----:} T_{vj} = 125 \,^{\circ}\text{C}$



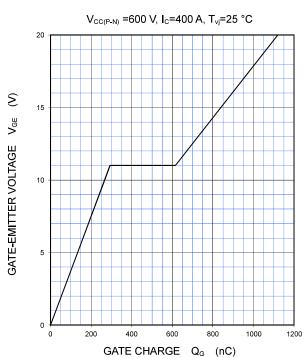
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CE}=300 V, V_{GE}=±15 V, I_E=400 A, INDUCTIVE LOAD, PER PULSE ——: T_{vj}=150 °C, - - - - : T_{vj}=125 °C

FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

 V_{CE} =300 V, V_{GE} =±15 V, R_{G} =1.6 Ω (Tr1/Tr4), INDUCTIVE LOAD $T_{V_{i}}$ =150 °C, ----: $T_{V_{i}}$ =125 °C

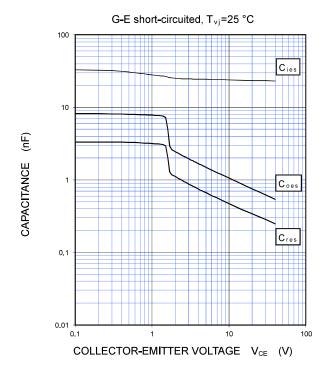


HIGH POWER SWITCHING USE INSULATED TYPE

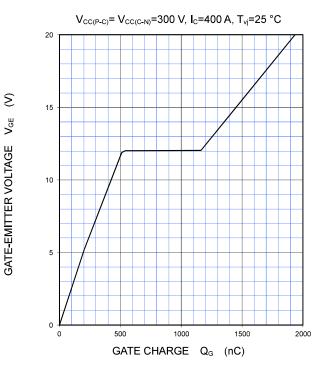

PERFORMANCE CURVES

BRIDGE PART

CAPACITANCE CHARACTERISTICS (TYPICAL)



GATE CHARGE CHARACTERISTICS (TYPICAL)

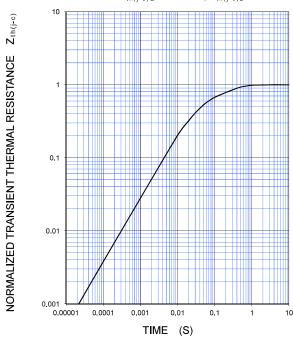


AC SWITCH PART

CAPACITANCE CHARACTERISTICS (TYPICAL)

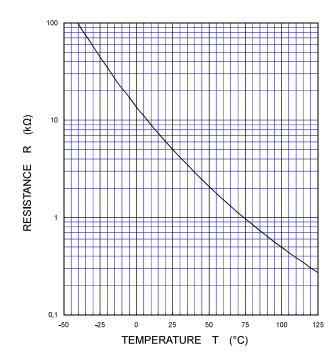
GATE CHARGE CHARACTERISTICS (TYPICAL)

HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

COMMON PART

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)


Single pulse, T_C=25 °C

BRIDGE PART: $R_{th(j-c)Q}$ =0.064 K/W, $R_{th(j-c)D}$ =0.105 K/W AC SWITCH PART: $R_{th(j-c)Q}$ =0.106 K/W, $R_{th(j-c)D}$ =0.165 K/W

NTC THERMISTOR PART

TEMPERATURE CHARACTERISTICS (TYPICAL)

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

Generally the listed company name and the brand name are the trademarks or registered trademarks of the respective companies.